Xác định hệ số, số hạng trong khai triển nhị thức Niu-tơn

Xác định hệ số, số hạng trong khai triển nhị thức Niu-tơn

A. Phương pháp giải & Ví dụ

Quảng cáo

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án
Số hạng chứa xm ứng với giá trị k thỏa mãn nhu cầu : np – pk + qk = m .
Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy hệ số của số hạng chứa xm là: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án với giá trị k đã tìm được ở trên.

Nếu k không nguyên hoặc k > n thì trong khai triển không chứa xm, hệ số phải tìm bằng 0 .

Chú ý: Xác định hệ số của số hạng chứa xm trong khai triển P(x) = (a + bxp + cxq)n

P. ( x ) = ( a + bxp + cxq ) n được viết dưới dạng a0 + a1x + … + a2nx2n
Ta làm như sau :

* Viết P(x) = (a + bxp + cxq)n Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

* Viết số hạng tổng quát khi khai triển các số hạng dạng (bxp+cxq)k thành một đa thức theo luỹ thừa của x.

* Từ số hạng tổng quát của hai khai triển trên ta tính được hệ số của xm.

Chú ý: Để xác định hệ số lớn nhất trong khai triển nhị thức Niutơn

Ta làm như sau :

* Tính hệ số ak theo k và n;

* Giải bất phương trình ak-1 ≤ ak với ẩn số k;

* Hệ số lớn nhất phải tìm ứng với số tự nhiên k lớn nhất thoả mãn bất phương trình trên.

Ví dụ minh họa

Quảng cáo

Bài 1: Tìm hệ số của x5 trong khai triển đa thức của: x(1-2x)5+x2 (1+3x)10

Đáp án và hướng dẫn giải

Đặt f ( x ) = x ( 1-2 x ) 5 + x2 ( 1 + 3 x ) 10
Ta có :
Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án
Vậy hệ số của x5 trong khai triển đa thức của f ( x ) ứng với k = 4 và i = 3 là :
Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 2: Đa thức P(x) =(1+3x+2×2)10=a0 + a1 x + ⋯ + a20 x20. Tìm a15

Đáp án và hướng dẫn giải

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án
với 0 ≤ i ≤ k ≤ 10. Do đó k + i = 15 với các trường hợp
k = 10, i = 5 hoặc k = 9, i = 6 hoặc k = 8, i = 7
Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 3: Tìm hệ số không chứa x trong các khai triển sau (x3 – (2/x))n, biết rằng Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án và hướng dẫn giải

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Quảng cáo

B. Bài tập vận dụng

Bài 1: Tìm hệ số cuả x8 trong khai triển đa thức f(x)=[1+x2 (1-x)]8

Lời giải:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án
Trong khai triển trên ta thấy bậc của x trong 3 số hạng đầu nhỏ hơn 8, bậc của x trong 4 số hạng cuối lớn hơn 8. Do đó x8 chỉ có trong số hạng thứ tư, thứ năm với hệ số tương ứng là :
Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án
Vậy hệ số cuả x8 trong khai triển đa thức [ 1 + x2 ( 1 – x ) ] 8 là :

a8 = Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án = 238.

Bài 2: Đa thức P(x) = (1 + 3x + 2×2)10 = a0 + a1 x+⋯+a20 x20.. Tìm a15

Lời giải:

Ta có :
Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án
với 0 ≤ i ≤ k ≤ 10. Do đó k + i = 15 với các trường hợp
k = 10, i = 5 hoặc k = 9, i = 6 hoặc k = 8, i = 7
Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 3: Trong khai triển (2a-b)5, hệ số của số hạng thứ bằng bao nhiêu?

Lời giải:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án
Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 4: Trong khai triển nhị thức (a+2)n+6,(n ϵ Z). Có tất cả số hạng. Vậy n bằng bao nhiêu?

Lời giải:

Trong khai triển ( a + 2 ) ( n + 6 ), ( n ϵ N ) có tổng thể n + 7 số hạng .
Do đó n + 7 = 17 ⇔ n = 10 .

Bài 5: Trong khai triển (3×2-y)10, hệ số của số hạng chính giữa là bao nhiêu?

Lời giải:

Trong khai triển ( 3×2 – y ) 10 có tổng thể 11 số hạng nên số hạng chính giữa là số hạng thứ 6 .

Vậy hệ số của số hạng chính giữa là Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án.

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác :

Giới thiệu kênh Youtube VietJack

Ngân hàng trắc nghiệm lớp 11 tại khoahoc.vietjack.com

Đã có app VietJack trên điện thoại thông minh, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi trực tuyến, Bài giảng …. không lấy phí. Tải ngay ứng dụng trên Android và iOS .

Nhóm học tập facebook miễn phí cho teen 2k5: fb.com/groups/hoctap2k5/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Theo dõi chúng tôi không lấy phí trên mạng xã hội facebook và youtube :

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

to-hop.jsp

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *